Reg. No. :

Question Paper Code : 11486

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2012.

Fourth Semester

Common to ECE and Biomedical Engineering

MA 2261/181403/MA 45/MA 1253/10177 PR 401/080380009 — PROBABILITY AND RANDOM PROCESSES

(Regulation 2008)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. The moment generating function of a random variable X is given by $M(t) = e^{3(e^t 1)}$. What is P[X = 0]?
- 2. An experiment succeeds twice as often as it fails. Find the chance that in the next 4 trials, there shall be at least one success.
- 3. Find the marginal density functions of X and Y if $f(x,y) = \begin{cases} \frac{6}{5}(x+y^2), & 0 \le x \le 1, \\ 0, & \text{otherwise} \end{cases}$
- 4. Find the acute angle between the two lines of regression, assuming the two lines of regression.
- 5. Define a strictly stationary random process.
- 6. Prove that sum of two independent Poisson processes is again a Poisson process.
- 7. Find the variance of the stationary process $\{X(t)\}$ whose auto correlation function is given by $R_{XX}(\tau) = 2 + 4e^{-2|\tau|}$.
- 8. Prove that for a WSS process $\{X(t)\}, R_{XX}(t, t + \tau)$ is an even function of τ .

Find the system Transfer function, if a Linear Time Invariant system has an

 $ext{impulse function } H(t) = egin{cases} rac{1}{2c}; & |t| \leq c \ 0; & |t| \geq c \end{cases}.$

10. Define Band-Limited white noise.

9.

PART B — $(5 \times 16 = 80 \text{ marks})$

- probability density Х isgiven by If the of 11. (a) (i) (2(1-x) for 0 < x < 1,Moment. Hence find its $f(x) = \begin{cases} 0 \\ 0 \end{cases}$ otherwise (6)evaluate $E[(2X + 1)^2]$.
 - (ii) Find MGF corresponding to the distribution $f(\theta) = \begin{cases} \frac{1}{2}e^{-\theta/2} & \theta > 0\\ 0 & \text{otherwise} \end{cases}$ and hence find its mean and variance.(6)
 - (iii) Show that for the probability function

$$p(x) = P(X = x) = \begin{cases} \frac{1}{x(x+1)}, & x = 1, 2, 3....\\ 0 & \text{otherwise} \end{cases} E(X) \text{ does not exist. (4)}$$

Or

(b) (i)

(ii)

- Assume that the reduction of a person's oxygen consumption during a period of Transcendental Meditation (T.M) is a continuous random variable X normally distributed with mean 37.6 cc/mm and S.D 4.6 cc/min. Determine the probability that during a period of T.M. a person's oxygen consumption will be reduced by
 - (1) at least 44.5 cc/min
 - (2) utmost 35.0 cc/min
 - (3) anywhere from 30.0 to 40.0 cc/mm.

The random variable X has exponential distribution with $f(x) = f(X) = f(x) = \begin{cases} e^{-x}, & 0 < x < \infty \end{cases}$

$$\left\{ egin{array}{cc} 0, & ext{othewise} \end{array}
ight.$$

Find the density function of the variable given by

- $(1) \quad Y = 3X + 5$
- (2) $Y = X^2$.

11486

(8)

 $(8)^{-1}$

12. (a) (i)

The joint pdf of a two-dimensional random variable (X, Y) is given

by
$$f(x, y) = xy^2 + \frac{x^2}{8}, 0 \le x \le 2, 0 \le y \le 1$$

Compute $P(Y < 1/2), P(X > 1 | Y < 1/2) \text{ and } P(X + Y \le 1).$ (8)

(ii) If the independent random variables X and Y have the variances 36 and 16 respectively, find the correlation coefficient between (X + Y)and (X - Y). (8)

Or

(b) If X and Y are independent random variables with probability density functions $f_X(x) = 4e^{-4x}, x \ge 0; f_Y(y) = 2e^{-2y}, y \ge 0$ respectively.

(\cdot)	Find the density function of $U = \frac{X}{X} + Y$	(11)
(I)	Find the density function of $O = \frac{V + V}{V + V}$, $V = X + Y$.	(11)

- (ii) Are U and V independent? (2)
- (iii) What is P(U > 0.5)?

13. (a)

(i)

The process $\{X(t)\}$ whose probability distribution under certain condition is given by

$$P\left\{X\left(t\right)=n\right\} = \begin{cases} \frac{(at)^{n-1}}{(1+at)^{n+1}}, & n = 1, 2.\\ \frac{at}{1+at}, & n = 0 \end{cases}$$

Find the mean and variance of the process. Is the process first-order stationary? (8)

(ii) If the WSS process {X(t)} is given by X (t) = 10 cos (100t + θ), where θ is uniformly distributed over (-π, π), prove that {X(t)} is correlation ergodic.

Or.

- (b) (i) If the process $\{X(t); t \ge 0\}$ is a Poisson process with parameter λ , obtain P[X(t) = n]. Is the process first order stationary? (8)
 - (ii) Prove that a random telegraph signal process $Y(t) = \alpha X(t)$ is a Wide Sense Stationary Process when α is a random variable which is independent of X(t), assumes values -1 and +1 with equal probability and $R_{XX}(t_1, t_2) = e^{-2\lambda |t_1 - t_2|}$. (8)

3

11486

(3)

(i) (a) 14.

If $\{X(t)\}$ and $\{Y(t)\}$ are two random processes with auto correlation $R_{XX}(au)$ and $R_{YY}(au)$ respectively then prove that function $|R_{XX}(\tau)| \leq \sqrt{R_{XX}(0)R_{YY}(0)}$. Establish any two properties of auto (8)correlation function $R_{XX}(\tau)$.

- Find the power spectral density of the random process whose auto (ii)correlation function is $R(\tau) = \begin{cases} 1 - |\tau|, & \text{for } |\tau| \leq 1 \\ 0, & \text{elsewhere} \end{cases}$ (8)
- (b)

15.

(a)

State and prove Wiener Khintchine theorem and hence find the power spectral density of a WSS process X(t) which has an autocorrelation $R_{xx}(\tau) = A_0 \left[1 - \left|\tau\right|/T\right], -T \le t \le T.$ (16)

. Or

- Show that if the input $\{X(t)\}$ is a WSS process for a linear system (i). then output $\{Y(t)\}$ is a WSS process. Also find $R_{XY}(\tau)$. (8)
- If X(t) is the input voltage to a circuit and Y(t) is the output voltage. (ii) process with stationary random $\mu_X = 0$ $\{X(t)\}$ is a and $R_{XX}\left(au
 ight) =e^{-2\left| au
 ight| }$. Find the mean μ_{Y} and power spectrum $S_{YY}(\omega)$ of the output if the system transfer function is given by $H(\omega)=\frac{1}{\omega+2i}\,.$ (8)
 - JOr

(b) + (i)

If $Y(t) = A \cos(w_0 t + \theta) + N(t)$, where A is a constant, θ is a random variable with a uniform distribution in $(-\pi, \pi)$ and $\{N(t)\}$ is a band-limited Gaussian white noise with power spectral $ext{density} S_{_{N\!N}}(w) = egin{cases} rac{N_{_0}}{2}, & ext{for } |w-w_{_0}| < w_{_B} \ 0, & ext{elsewhere} \end{cases}.$ Find the power

spectral density $\{Y(t)\}$. Assume that $\{N(t)\}$ and θ are independent. (10)

A system has an impulse response $h(t) = e^{-\beta t} U(t)$, find the power (ii)spectral density of the output Y(t) corresponding to the input X(t).(6)

11486